403: Algorithms and Data Structures

Asymptotic Notation

Fall 2016
UAlbany
Computer Science

Assumptions

- All functions take non-negative values
- All functions are defined on non-negative integers
- Only such functions will be of interest

Overview of Asymptotic Notation

Notation	Informal statement	Formal definition	
$f=O(g)$	f grows no faster than g	$\exists n_{0}>0, c>0$	s.t. $f(n) \leq c g(n), \forall n \geq n_{0}$
$f=\Omega(g)$	f grows at least as fast as g	$\exists n_{0}>0, c>0$	s.t. $f(n) \geq c g(n), \forall n \geq n_{0}$
$f=\Theta(g)$	f grows at the same rate as g	$\exists n_{0}>0, c_{1}>0, c_{2}>0$	s.t. $c_{1} g(n) \leq f(n) \leq c_{2} g(n), \forall n \geq n_{0}$
$f=o(g)$	f grows slower than g	$\forall c>0 \exists n_{0}>0$	s.t. $f(n) \leq c g(n), \forall n \geq n_{0}$
$f=\omega(g)$	f grows faster than g	$\forall c>0 \exists n_{0}>0$	s.t. $f(n) \geq c g(n), \forall n \geq n_{0}$

Overview of Asymptotic Notation

Notation	Informal statement	Formal definition	
$g=O(f)$	g grows no faster than f	$\exists n_{0}>0, c>0$	s.t. $g(n) \leq c f(n), \forall n \geq n_{0}$
$g=\Omega(f)$	g grows at least as fast as f	$\exists n_{0}>0, c>0$	s.t. $g(n) \geq c f(n), \forall n \geq n_{0}$
$g=\Theta(f)$	q grows at the same rate as f	$\exists n_{0}>0, c_{1}>0, c_{2}>0$	s.t. $c_{2} f(n)<q(n)<c_{1} f(n), \forall n>n_{0}$
$g=o(f)$	g grows slower than f	$\forall c>0 \exists n_{0}>0$	s.t. $g(n) \leq c f(n), \forall n \geq n_{0}$
$g=\omega(f)$	g grows faster than f	$\forall c>0 \exists n_{0}>0$	s.t. $g(n) \geq c f(n), \forall n \geq n_{0}$

- $o()$ is used to denote $O()$ bound that is not asymptotically tight
- E.g. we can verify that $2 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$, but it is not tight
- We can denote this as $2 n=0\left(n^{2}\right)$
- ...however $2 n^{2}$ is not $o\left(n^{2}\right)$

Properties and Relations

Notation	Informal statement
$f=O(g)$	f grows no faster than g
$f=\Omega(g)$	f grows at least as fast as g
$f=\Theta(g)$	f grows at the same rate as g
$f=o(g)$	f grows slower than g
$f=\omega(g)$	f grows faster than g

- Θ is a shorthand: $f=O(g)$ and $f=\Omega(g) \Longleftrightarrow f=\Theta(g)$
- o is weaker than $O: f=o(g) \Rightarrow f=O(g)$
- ω is weaker than Ω : $f=\omega(g) \Rightarrow f=\Omega(g)$
- Sum: $f_{1}=O\left(g_{1}\right)$ and $f_{2}=O\left(g_{2}\right) \Rightarrow f_{1}+f_{2}=O\left(g_{1}+g_{2}\right)$ (same for other notations)
- Product: $f_{1}=O\left(g_{1}\right)$ and $f_{2}=O\left(g_{2}\right) \Rightarrow f_{1} \times f_{2}=O\left(g_{1} \times g_{2}\right)$ (same for other notations)
- Transitivity: $f=O(g)$ and $g=O(h) \Rightarrow f=O(h)$ (same for other notations)
- Symmetry $\Theta: f=\Theta(g) \Longleftrightarrow g=\Theta(f)$
- Transpose symmetry O and Ω : $f=O(g) \Longleftrightarrow g=\Omega(f)$
- Transpose symmetry o and ω : $f=o(g) \Longleftrightarrow g=\omega(f)$

Read the rest of Chapter 3

- Comparing the growth of common functions

$\lg \left(\lg ^{*} n\right)$	$2^{\lg ^{*} n}$	$(\sqrt{2})^{\lg n}$	n^{2}	$n!$	$(\lg n)!$
$\left(\frac{3}{2}\right)^{n}$	n^{3}	$\lg ^{2} n$	$\lg (n!)$	$2^{2^{n}}$	$n^{1 / \lg n}$
$\ln \ln n$	$\lg ^{*} n$	$n \cdot 2^{n}$	$n^{\lg \lg n}$	$\ln n$	1
$2^{\lg n}$	$(\lg n)^{\lg n}$	e^{n}	$4^{\lg n}$	$(n+1)!$	$\sqrt{\lg n}$
$\lg ^{*}(\lg n)$	$2^{\sqrt{2 \lg n}}$	n	2^{n}	$n \lg n$	$2^{2^{n+1}}$

Announcements

- Read through Chapter 3
- HW1 solutions available on BB

