403: Algorithms and Data Structures

Asymptotic Notation

Fall 2016

UAlbany

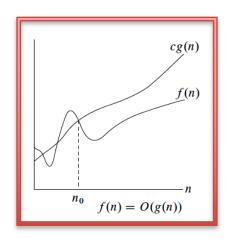
Computer Science

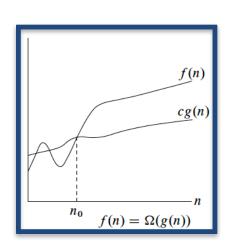
Assumptions

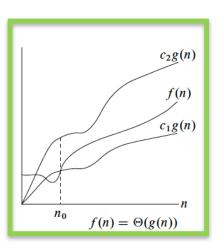
- All functions take non-negative values
- All functions are defined on non-negative integers
- Only such functions will be of interest

Overview of Asymptotic Notation

Notation	Informal statement	Formal definition	
f = O(g)	f grows no faster than g	$\exists n_0 > 0, c > 0$	s.t. $f(n) \le cg(n), \forall n \ge n_0$
$f = \Omega(g)$	f grows at least as fast as g	$\exists n_0 > 0, c > 0$	s.t. $f(n) \ge cg(n), \forall n \ge n_0$
$f = \Theta(g)$	f grows at the same rate as g	$\exists n_0 > 0, c_1 > 0, c_2 > 0$	s.t. $c_1g(n) \le f(n) \le c_2g(n), \forall n \ge n_0$
f = o(g)	f grows $slower$ than g	$\forall c > 0 \ \exists n_0 > 0$	s.t. $f(n) \le cg(n), \forall n \ge n_0$
$f = \omega(g)$	f grows $faster$ than g	$\forall c > 0 \ \exists n_0 > 0$	s.t. $f(n) \ge cg(n), \forall n \ge n_0$







Overview of Asymptotic Notation

Notation	Informal statement	Formal definition	
g = O(f)	g grows no faster than f	$\exists n_0 > 0, c > 0$	s.t. $g(n) \le cf(n), \forall n \ge n_0$
$g = \Omega(f)$	g grows at least as fast as f	$\exists n_0 > 0, c > 0$	s.t. $g(n) \ge cf(n), \forall n \ge n_0$
$q = \Theta(f)$	q grows at the same rate as f	$\exists n_0 > 0, c_1 > 0, c_2 > 0$	s.t. $c_2 f(n) < q(n) < c_1 f(n), \forall n > n_0$
g = o(f)	g grows $slower$ than f	$\forall c > 0 \ \exists n_0 > 0$	s.t. $g(n) \le cf(n), \forall n \ge n_0$
$g = \omega(f)$	g grows $faster$ than f	$\forall c > 0 \ \exists n_0 > 0$	s.t. $g(n) \ge cf(n), \forall n \ge n_0$

- o() is used to denote O() bound that is not asymptotically tight
 - E.g. we can verify that $2n = O(n^2)$, but it is not tight
 - We can denote this as 2n = o(n²)
 - ...however 2n² is not o(n²)

Properties and Relations

Notation	Informal statement
f = O(g)	f grows no faster than g
$f = \Omega(g)$	f grows at least as fast as g
$f = \Theta(g)$	f grows at the same rate as g
f = o(g)	f grows $slower$ than g
$f = \omega(g)$	f grows $faster$ than g

- Θ is a shorthand: f = O(g) and $f = \Omega(g) \iff f = \Theta(g)$
- o is weaker than $O: f = o(g) \Rightarrow f = O(g)$
- ω is weaker than Ω : $f = \omega(g) \Rightarrow f = \Omega(g)$
- Sum: $f_1 = O(g_1)$ and $f_2 = O(g_2) \Rightarrow f_1 + f_2 = O(g_1 + g_2)$ (same for other notations)
- Product: $f_1 = O(g_1)$ and $f_2 = O(g_2) \Rightarrow f_1 \times f_2 = O(g_1 \times g_2)$ (same for other notations)
- Transitivity: f = O(g) and $g = O(h) \Rightarrow f = O(h)$ (same for other notations)
- Symmetry Θ : $f = \Theta(g) \iff g = \Theta(f)$
- Transpose symmetry O and Ω : $f = O(g) \iff g = \Omega(f)$
- Transpose symmetry o and ω : $f = o(g) \iff g = \omega(f)$

Read the rest of Chapter 3

Comparing the growth of common functions

Announcements

- Read through Chapter 3
- HW1 solutions available on BB